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ABSTRACT. — Stars are currently used to evaluate the pointing performance of the Hybrid 
Radio Frequency (RF)/Optical receiver, but stars are not suitable for communications, 
ranging, and science applications. We propose to create modulated artificial optical 
sources on the Moon by illuminating one or more of the five Apollo retro-reflectors from 
the ground, using existing resources. This will ensure the continued development and 
testing of optical communications, ranging, and science protocols suitable for deep-space 
applications at the conclusion of the Psyche mission. Realistic planetary rotation and 
orbital trajectories, atmospheric turbulence, and signal power commensurate with the 
photon-starved deep-space optical channel will be made possible due to the “inverse 
distance-to-the-fourth” power law characteristic of radar reflections.  

I. Introduction  

The Deep Space Network’s (DSN) Hybrid RF/Optical receiver is an entirely new concept 
in optical communications. In its final configuration, it will employ sixty-four (64) 
hexagonal mirrors with spherical shape placed on the main reflector of a 34 m DSN 
antenna at the Goldstone Deep Space Communications Complex. This segmented optical 
configuration is equivalent to an 8.3-meter diameter direct detection receiver, designed for 
deep-space optical communications. This incredible NASA asset will be available for 
further demonstrations and experiments when the planned Psyche mission concludes. 
The unique design of the Hybrid RF/Optical receiver enables novel applications for 
enhanced communications, ranging, and science applications that will greatly benefit 
NASA’s exploration of the solar system, the Kuiper belt, and beyond. 

Although most lunar retro-reflector experiments to date have been carried out at 532 nm 
and 1064 nm wavelengths, the Psyche spacecraft carries a 4-watt 1550 nm laser as the 
downlink optical transmitter for telemetry. For the examples in this paper, we assume that 
a spare version of this laser transmitter, or a working engineering model, could be used to 
illuminate the Apollo retro-reflectors from the ground, generating a weak return signal to 
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emulate a photon-starved deep-space channel. We would then be able to carry out 
communications, ranging, and secret key distribution (SKD) experiments on the ground, 
in order to advance the development of future deep-space photonic protocols.  

II. The Optical Lunar Retro-Reflector Link 

The key components of the ground-to-Moon optical lunar retro-reflector link is 
characterized by a laser transmitter on the ground, transmitting pulse-position modulated 
(PPM) pulses to one of the Apollo retro-reflectors. The retro-reflector array reflects the 
intercepted portion of the laser beam back towards the transmitter, and the ground 
receiver collects a portion of the reflected photons for processing. 

A conceptual design of the ground system is shown in Figure 1, which is an artist’s 
rendition of the Hybrid RF/Optical Antenna located at the Venus site in the Goldstone 
Deep-Space Communications Complex at Ft. Irwin, California. We propose using a spare 
optical transmitter from the Psyche spacecraft, or a suitable engineering model of this 
optical transmitter located on the ground next to the optical receiver, together with a laser 
safety monitoring system, to generate the PPM modulated 1550 nm laser signal to 
illuminate the lunar retro-reflectors. 

The 34-m Hybrid RF/Optical Antenna is currently under development. When completed, 
there will be 64 hexagonal optical mirrors, with a spherical instead of parabolic or 
hyperbolic figure, arranged in four groups symmetrically around the main reflector of the 
antenna. The equivalent circular area of this array is 8.3 meters. While the collecting area 
of this receiver is equivalent to that of a single 8.3-meter mirror, its resolution is not the 
same, since the 1-m mirror elements are not phased up coherently. Therefore, the 
diffraction-limited field-of-view (FOV) of this receiver cannot exceed that of a single 1-m 
mirror, which would ideally be 𝜆/𝑑 radians as the physical limit, where 𝜆 is the 

 

Figure 1. Artist’s conception of the 34-meter Hybrid RF/Optical Antenna. 
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wavelength. However, the mirrors are not diffraction limited, hence their FOV is actually 
much larger, in part determined by the accuracy of the alignment between the mirror 
elements. The receiver will use a 64-element wide bandwidth photon-counting nanowire 
detector array with quantum efficiency of up to 90% or more, hence capable of counting 
individual photons. During operation, the FOV of the receiver is adjusted to 𝜃!"# =
1.8𝜆/𝑟$, where 𝑟$ is the Fried parameter, characterizing the coherence-length of the 
atmosphere, which is an indication of the degree of turbulence. 

The Uplink Channel. The Psyche transmitter assembly is envisioned as the ground-based 
uplink transmitter that illuminates the Apollo retro-reflectors, which introduce enough 
loss into the channel upon reflection to emulate a photon-starved deep-space link, 
including real-world effects such as relative motion between the transmitter and receiver, 
predict-driven pointing and point-ahead compensation at the transmitter, acquisition and 
tracking of the lunar retro-reflector signal by the receiver, temporal synchronization of 
weak PPM signals, detection and decoding of the transmitted data, and the application of 
ranging and science demonstration experiments to test new SKD algorithms and 
relativistic tests of gravity effects. A major advantage of the lunar testbed is that round-trip 
light-time between the Earth and the Moon is only 2.6 seconds, instead of tens of minutes 
to hours as in deep-space links, enabling much faster evaluation and testing of new 
concepts. 

The Downlink Channel. The Apollo 15 retro-reflector, the largest of the Apollo retro-
reflectors left on the Moon, consists of 300 solid fused silica corner cubes, uncoated and 
not silvered, hence capable of reflecting a large band of optical and infrared wavelengths 
including 632 nm red, 1064 nm near-infrared Ng-YAG laser light, as well as 1550 nm 
infrared light currently used in optical fiber-optic communications links. A schematic of 
the Apollo 15 retro-reflector is shown in Figure 4, which shows the arrangement of the 300 
corner-cubes on two panels, the larger panel with 17 ´ 12 = 204 and the smaller panel with 
8 ´ 12 = 96 corner-cubes.  

The non-coherently reflected laser signal power reaching the ground has unique properties 
that are not immediately obvious, and hence need to be examined in greater detail for the 
lunar testbed application. First, we consider a scalar model that accounts for diffraction to 
determine the reflected signal power density reaching the ground. Second, the 
polarization properties of the corner-cubes that are important in the context of SKD that 
employ polarization basis, such as the BB84 protocol, will be considered.  

Atmospheric Beam-Steering on the Uplink Beam. The transmitted uplink laser beam 
must pass through the terrestrial atmosphere, which often experiences random 
fluctuations in refractive index due to thermal effects and wind, called turbulence. The 
impact of turbulence on optical beam propagation is generally characterized by the Fried 
parameter 𝑟$, which defines the coherence-length of an optical wavefront passing through 
the turbulent atmosphere.  
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The Fried parameter 𝑟$ is often defined at 500 nm wavelengths, where strong turbulence 

is characterized by 𝑟$ ≤ 3 cm, moderate turbulence by 𝑟$ ≅ 5 cm, and weak turbulence 

by 𝑟$ ≥ 7 cm. The Fried parameter is a function of wavelength, and can be extrapolated 

from the measurement wavelength 𝜆$ to another wavelength 𝜆% via the relation  

𝑟$(𝜆%) ≅ 𝑟$(𝜆$)(𝜆%/𝜆$)&/(. For example, if 𝑟$ = 3 cm at 500 nm wavelength 
corresponding to strong turbulence, then at 1550 nm the Fried parameter 

becomes 𝑟$(1550) ≅ 11.7 cm. The correction factor for these two frequencies is 

(1550/500)&/( = 3.887, hence for moderate turbulence at 1550 nm 𝑟$	becomes 19.4 cm, 
and for weak turbulence it is approximately 27.2 cm. 

Consider an uplink transmitter with telescope diameter 𝑑$. If the beam divergence is 
greater than the standard deviation of the random beam-steering due to turbulence, then 
fades at the target can be minimized. This situation is illustrated in Figure 2, where the 
standard deviation of the random beam-steering angle 𝛿 is smaller than the beam 
divergence, minimizing random fades at the retro-reflector. For a Gaussian beam with 
beam-waist 𝑤$, it has been shown in Reference [1] that if the ratio of Gaussian beam 
diameter 2𝑤$ to Fried parameter 𝑟$ is in the range 0.35 ≤ 2𝑤$ ∕ 𝑟$ ≤ 1.22, then the impact 
of ground turbulence on the uplink beam is primarily random beam-steering, and the 
intensity scintillation index 𝜎)*	can be characterized by the following model in the far-
field: 𝜎)* = 4𝛼* ∕ (1 + 4𝛼), where 𝛼 ≅ 0.863(2𝑤$ ∕ 𝑟$)(∕, for lunar distances. For 
2𝑤! 𝑟!⁄ = 0.5	direct substitution yields 𝛼 = 0.2718, and the scintillation index becomes 
𝜎)* = 0.14,	which implies relatively small intensity fluctuations at the lunar target. 

 

Figure 2. Diagram of uplink beam and lunar retro-reflector array, with the standard deviation of the 

beam-steering angle 𝜹 smaller than the beam divergence. 
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Note that other techniques can be applied to mitigate fading, such as splitting the laser 
power into several beams and then separating the beams spatially to undergo independent 
fading, which can average the fades at the target. Alternately, adaptive optics techniques 
can be employed to minimize beam steering by turbulence, but these techniques are 
beyond the scope of this study. Here we consider system parameters that enable minimal 
beam-steering by expanding the uplink beam sufficiently to minimize turbulence effects, 
but without the additional complexities of more sophisticated system concepts. 

Background Effects in Lunar Retro-Reflector Applications. There are several scenarios 
suitable for lunar retro-reflector applications, including nighttime operation during the 
new Moon when the Apollo 15 site is dark, nighttime operation with the Apollo 15 site in 
sunlight generating a bright lunar background, and daytime operation for these two cases 
with strong, nominal, and weak atmospheric turbulence.  

Atmospheric turbulence impacts both the uplink and the downlink, but in different ways. 
On the uplink channel, the transmitted laser light is steered by turbulence leading to 
fading at the retro-reflector as the beam occasionally misses the target, whereas on the 
downlink it increases the point spread function (PSF) of the received reflected laser signal, 
forcing the receiver to open up its FOV, thus admitting more background photons into the 
receiver that degrades communications and ranging performance.  

First, we consider the uplink channel and suggest an approach to mitigate beam-steering 
due to atmospheric turbulence. Second, the magnitude of the backscattered laser radiation 
and background radiation due to solar illumination will be considered. Finally, the impact 
of the Apollo 15 retro-reflector corner-cubes on the polarization of the uplink signal will be 
evaluated, which is important for implementing some of the SKD algorithms considered in 
this study. 

Background effects for the lunar retro-reflector experiments: backscattered laser 
signal counts. Here we develop a simple model that can be used to approximate the laser 
radiation backscattered from the lunar surface in the vicinity of the Apollo 15 retro-reflector 

array. In the far-field, the divergence of the transmitted beam is given by Ω = 2𝜆/𝜋𝑤$. 

If we assume a Gaussian beam waist of 𝑤$ = 10 cm and hence beam diameter of 20 cm 
at the telescope aperture (consistent with the Psyche telescope diameter of 22 cm), then 

Ω = 2𝜆/𝜋𝑤$ ≅ 10𝜇 radians. At the lunar distance of 𝑅 = 384400 × 10, m, the diameter 

of the circular footprint is Ω𝑅 = 3.844 × 10, m, with an illuminated footprint area 

of 𝐴-,/0 = 𝜋(3.844 × 10,)* 4⁄ = 1.18 × 101m*. With an average uplink laser power of 

𝑃2 = 4 watts, the power density at the Moon is Φ- = 3.4 × 1031 watts per square meter. 

Assuming the reflection coefficient (or albedo) 𝛼 of the lunar surface near the Apollo 15 

site is approximately at 1550 nm is 𝛼 ≅ 0.1, and that the lunar surface scattering is 
Lambertian, we approximate the reflected power as being backscattered towards the 

Earth uniformly into a ±𝜋/4 radian cone, yielding a footprint diameter of 𝐷4,/0 =
2𝑅	sin(𝜋 ∕ 4) = 5.44 × 105 m at the distance of the Earth R, and an effective scattering 

area of 𝐴4,/0 =
6
7
𝐷4,/0* = 2.32 × 10%1m*.  
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Taking the reflectivity coefficient into account, the scattered laser power density at the 

ground is Φ4 = 𝛼𝑃2 ∕ 𝐴4,/0 = 1.72 × 103%5 watts per square meter. The Hybrid RF/Optical 

receiving antenna has an effective optical diameter of 𝐷!"# = 8.3 m, or an effective 

collecting area of 𝐴!"# =
6
7
𝐷!"#* = 54.1 square meters. At a laser wavelength of 1550 nm, 

the energy of a single photon is 𝐸08 = ℎ𝑐 ∕ 𝜆 = 1.28 × 103%9 joules, where h is Planck’s 

constant. Therefore, the number of backscattered laser photons collected from the Apollo 

15 region by the ground receiver is 𝑛:# = Φ4𝐴!"# ∕ 𝐸08 = 728 photons per second. 

Assuming the maximum PPM slot-width generated by the transmitter is 𝜏 = 8 ns, the 

average number of backscattered laser photons per PPM slot is approximately 𝑁:# =
𝜏𝑛:# = 5.8 × 103& photons per slot. This suggests that backscattered laser photons can be 
neglected at the ground receiver, when 8 ns PPM slots are used. This, however, may not be 
the case when lunar-orbiting satellites illuminate the retro-reflector for ranging 
application, due to the much shorter distance of lunar orbiters to the Moon. 

Background effects for the lunar retro-reflector experiments: background counts 
from the full Moon. When the Apollo 15 lander region is illuminated by direct sunlight, 
the reflected solar photons encompass the solar spectrum at wavelengths shorter than 
3 microns, but begin to deviate at longer wavelengths due to blackbody radiation from the 
390 K illuminated lunar surface. The spectral radiance of the full Moon is shown in 
Figure 3, where it can be seen that the spectral radiance of the full Moon at a wavelength 
of 1.55 microns is roughly 20 watts per square meter, steradian, and optical filter 
bandwidth in micro-meters [2]. 

The effective diameter of the Hybrid RF/Optical receiver is 𝐷!"# = 8.3 meters, and its 

effective area is 𝐴!"# = 54.1 square meters. It is common practice with the Hybrid 

RF/Optical receiver to use an FOV of 𝜃!"# = 1.8𝜆 ∕ 𝑟$ = 2.79 × 103( radians with 𝑟$ =
10 cm and 𝜆 = 1550 nm, or a solid angle of approximately Ω!"# =

6
7
𝜃!"#* = 6.1 × 103%$ 

steradians. Assuming a 1 Angstrom optical filter with a bandwidth of 1037	micro-meters is 
used, the total background power impinging on the photon-counting detector when 

 

Figure 3. Spectral radiance of the full Moon outside the Earth’s atmosphere, including both 

solar reflection and thermal emission, as illustrated in [2]. 
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pointing at the full Moon is approximately 𝑃- = 6.6 × 103%% watts under the stated 
conditions. Using these numbers, the average number of photons per second when 

pointing at the full Moon is approximately 𝑛- = 𝑃- ∕ 𝐸08 = 5.16 × 105 photons per 

second, or 𝑁:# = 𝜏𝑛:# = 4.12 photons per slot, when looking at the full Moon with strong 
turbulence. This is likely to be the strongest background radiation that would be 

encountered during well-designed retro-reflector experiments, corresponding to 𝑟$ =
10 cm at 1550 nm, which represents poor seeing or strong turbulence. Under excellent 

seeing conditions corresponding to Fried parameters of up to 𝑟$ = 30 cm at 1550 nm 
wavelength, the background photon-counts will be approximately one tenth of the results 
shown here. Based on these calculations, the number of background photons can range 
from near zero photons per PPM slot, to as much as four photons per slot under the 
extreme conditions of the full Moon and strong turbulence. These background counts 
suggest that lunar retro-reflector experiments should either be carried out at night, or 
under excellent seeing conditions when the Apollo site is not fully illuminated by the Sun, 
in order to minimize background radiation. The impact of background radiation on the 
detection of uncoded M-PPM symbols is discussed in Section IV, Deep Space 
Communications Example. 

Scalar Model of the Apollo 15 Retro-Reflector. In the Apollo 15 retro-reflector array, the 
diameter of each corner-cube is 𝑑## = 3.8 cm. The pattern of corner-cubes is shown in 
Figure 4, consisting of a smaller 12 ´ 8 = 96 element corner-cube array, and a larger 
12 ´ 17 = 204 element array for a total of 300 corner-cubes. The array was placed on the 
Moon’s surface with the normal to the plane of the array pointing towards the Earth, to 
within a few degrees, to maximize the projected area of the array. Each corner-cube was 
carefully aligned prior to deployment; however, the surfaces were not aligned to a small 
fraction of an optical wavelength, hence the reflections do not add coherently. Therefore, 
each corner-cube reflects a plane-wave that diffracts at an angle of roughly 𝜆 𝑑##⁄ 	radians, 
generating the corresponding far-field patterns on the downlink. The diffracted field 
components add non-coherently in the far-field, resulting in a received downlink signal 
power 300 times greater than the power from each corner-cube. In other words, the total 
reflected power is determined by the effective area of the array, but this power diffracts into 
a wide angle of 𝜆 𝑑##⁄  radians determined by the corner-cube diameter, rather than by the 
much larger dimensions of the array. 

 

Figure 4. Schematic diagram of the Apollo 15 retro-reflector array, including labels for handle, pods, panels, 

and other mechanical components. 
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The reflected power density can be determined by computing the diameter 𝐷4,##  of the 

footprint on the ground, due to the circular corner-cubes with diameter 𝑑## = 0.038 m: 

𝐷4,## = 𝑅𝜆 ∕ 𝑑## = 15.68 × 10, meters, or 15.68 km. Using the value of the power 

density on the Moon derived previously, Φ- = 3.4 × 1031 watts per square meter 
assuming transmitter power of 4 watts and 𝑟$ ≅ 10	cm, and assuming an effective 

area of 𝐴!! =
6
7
300 × 𝑑##* = 0.33 meters, the reflected power at the Moon is 𝑃-,!! =

Φ;𝐴!! = 1.16 × 1031 watts. With an effective ground footprint area of 𝐴4,/0 =
6
7
𝐷4,##* =

1.93 × 105 square meters, this yields the following power density on the ground: Φ4 =
𝑃-,## ∕ 𝐴4,/0 = 6.01 × 103%& watts per square meter. Using the previously determined 

value of photon energy at 1550 nm, 𝐸08 = ℎ𝑐 ∕ 𝜆 = 1.28 × 103%9, and the area of the 

Hybrid RF/Optical receiver 𝐴!"# = 54.1 square meters, the average number of photons 

captured by the receiver aperture is 𝑁: = Φ4𝐴!"# ∕ 𝐸08 = 2.54 × 10( photons per second, 

under poor atmospheric conditions corresponding to 𝑟$ ≅ 10	cm. Under nominal 
conditions, when the Fried parameter is 20 cm, four times as many photons would be 

received on the average, yielding 𝑁: ≅ 1.016 × 10& or in round numbers approximately 
a million photons per second.  

III. Polarization Effects in the Apollo 15 Retro-Reflector 

Polarization Effects: The Apollo 15 lunar retro-reflector is composed of solid, uncoated, 
fused silica corner-cubes that rely on total internal reflection. The relationship between the 

polarization of the incident electromagnetic field components U𝐸<$, 𝐸=$V and the reflected 

field components U𝐸< , 𝐸=V	can be expressed in terms of the Jones matrix [	𝐽]	as described in 

[3], shown in Equation (1):  

 Z
𝐸<
𝐸=
[ = [	𝐽] Z

𝐸<$
𝐸=$

[, (1) 

where the electric field components are in the (𝑥, 𝑦) plane perpendicular to the direction 
of propagation, here assumed to be normally incident on the solid retro-reflector (SRR) as 
shown in Figure 5. The azimuthal angle is denoted by 𝛼, and in general the reflected 
components will also differ by an angle 𝜑, which implies that linear polarization is 
converted to elliptical polarization. 

 

Figure 5. Geometry of incident and reflected electrical field components impinging a solid retro-reflector, 

characterized by a Jones matrix, as illustrated in [3].  
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The calculation of the Jones matrix involves the refractive index of the optical material 
used in the corner-cube. The refractive index of fused silica used in the Apollo 15 retro-
reflector at 632.8 nm is 1.45702, which is the value used to compute the Jones matrix in 
[3]. The following values are also reported for several optical materials in Table 1 of 
Reference [3]: 

 
Table 1. Jones matrices for several common optical materials, from [3]. 

Material 
Refractive Index 

(@ 632.8 nm) Jones Matrix 

CaF2 1.43289 [ -0.5871 - 0.7268i 
-0.2521 + 0.0354i 

 0.2521 - 0.0354i 
-0.3644 + 0.8604i ] 

Fused Silica 1.45702 [ -0.7087 - 0.6015i 
-0.2487 + 0.0782i 

 0.2487 - 0.0782i 
-0.2369 + 0.8989i ] 

ULE 1.48093 [ -0.7945 - 0.4737i 
-0.2393 + 0.1158i 

 0.2393 - 0.1158i 
-0.1215 + 0.9170i ] 

BK-7 1.51509 [ -0.8697 - 0.2962i 
-0.2188 + 0.1610i 

 0.2188 - 0.1610i 
 0.0242 + 0.9185i ] 

 

The complex entries in the Jones matrix along with the unequal diagonal elements implies 
that for linearly polarized input vectors, for example X and Y, the reflected waves will be 
orthogonal elliptically polarized waves. For these output waves the polarization ellipses are 
rotated 90 degrees with respect to each other and the electric field vector rotates around in 
the right hand sense for one of the outputs and in the left hand sense for the other. 

Consider the application of these concepts to secret key distribution, as described in 
Section VI. The eigenvectors of the Jones matrix represent the two particular orthogonal 
polarizations that will reproduce themselves upon reflection from the cube. The “+” and  
“–” bases in the BB84 protocol can be created by choosing two orthogonal combinations of 

the eigenvectors. Assume the eigenvectors are represented as (0,1), and (1,0), respectively. 
An example BB84 protocol could employ the eigenvectors themselves as the “+” set, while 

the “–” set could be chosen as 
%
√*
(1,1), and 

%
√*
(1, −1). Other choices are also possible using 

different pairs of linear combinations of the eigenvectors. Each design choice has 
implications for the complexity of the polarizing components; some resulting in simpler 
polarizing components on transmit while others would have simpler receive components.  

IV. Deep-Space Communications Example 

An important application of the Lunar Retro-Reflector Testbed will be the emulation of the 
deep-space channel, due to the “inverse range-to-the-fourth power” loss characteristic of 
radar systems, while including realistic propagation effects from the atmosphere and 
orbital dynamics. The huge space loss between the ground laser transmitter and the 
ground receiver, via the lunar retro-reflector channel, mimics space loss from several 
astronomical units (AU), however it does not suffer from long round-trip light-times 
(RTLT) associated with real interplanetary channels, which can be from 10 minutes to 
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several hours or more. Since the RTLT between the Earth and the Moon is only 2.6 seconds, 
this enables testing, evaluation and modification of new detection, ranging, and science 
experiments rapidly, enabling a large number of runs per scheduled track instead of just 
one. First, we consider a communications emulation example, using realistic models for 
the Hybrid RF/Optical receiver and spacecraft laser transmitter developed for the Psyche 
spacecraft after that mission is over in 2023. 

The signal model employed by the Deep Space Optical Communications (DSOC) 
transmitter provides a good example of the parameters used in the following 
discussion. The DSOC transmitter assembly takes binary data as input blocks, encodes the 
data, and converts it to PPM symbols with M slots according to the block diagram shown 
in Figure 6, from Reference [4]. Binary information blocks are input to a pseudo-noise 
randomizer, after which CRC bits and termination bits are added, then input to a serially 
concatenated PPM encoder to generate PPM symbols that are further input to a channel 
interleaver forming frames. A frame synchronization marker is added in after each frame, 
the symbols are repeated q times, after which the symbols are mapped into PPM slots. 

 

Figure 6. Signal flow diagram of DSOC transmitter defining the downlink signal format, to be  

used as the uplink in this application. 
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In addition, M/4 guard slots are added to each PPM symbol, generating pseudo-PPM 
symbols of (M + M/4) slots. This is the uplink and downlink signal format that will be used 
in the simulations [5]. 

Note that repetition coding can be used to increase the slot-width by a factor of q = 1, 2, …, 
32, thus increasing the effective signal power per slot, at the expense of PPM symbol-rate.  

Poisson model of received PPM symbols. For the simulation, the downlink serially 
concatenated PPM (SCPPM) symbols have been generated using a Matlab encoder 
developed by Kenneth Andrews (JPL, Section 332) which was used in the simulation to 
generate PPM symbols of order (16, 32, 64, or 128).  

It is noteworthy that the electrical signal in the optical photon-counting receiver is very 
different in nature from the signal in a RF receiver, where due to much lower carrier 
frequency, the number of photons is so great that the intensity function of the received 
pulse is reproduced accurately. By contrast, the intensity function in the photon-counting 
receiver is approximated by a number of discrete high-bandwidth pulses. 

Figure 7 shows three examples of SCPPM pulses with photon counts for the case of  
𝑀 = 16, and 256 high-rate simulation samples per pulse illustrating high energy pulses 
with 𝜆: = 0.05 photons per sample yielding an average of 12.8 photons per pulse without 
background, low energy pulses with 𝜆: = 0.005 photons per sample yielding an average of 
1.28 photons per pulse, and low energy pulses with a moderate background photon rate of 
𝜆? = 0.005, showing background photons occurring randomly between the received 
signal pulses.  

The examples of Figure 7 represent the photon-counts that can be generated by a 
wideband photon-counting detector, which can effectively resolve 256 time-intervals per 
8 ns PPM pulse, approximating the “best case” scenario for estimating pulse-edge time of 
arrival. However, the deep-space receiver developed for DSOC samples at a maximum rate 
of 2 Gsps, generating 16 samples per 8 nsec PPM pulse [5]. In the following, we compare 
the ideal case of ultra-high rate sampling (256 samples per 8 ns pulse approximating 
arbitrarily high sampling rates), with the performance of the DSOC receiver, for estimating 
the range of the Apollo 15 retro-reflector from the ground.  

Although deep-space signals are typically encoded using forward error corrections codes 
(FEC) to improve performance, there are many different coding schemes including the 
SCPPM developed at JPL. One of the goals of the lunar testbed concept is to enable the 
development and testing of new FEC protocols and decoding strategies for future 
applications.  

It is generally accepted that FEC and decoder performance is related to uncoded symbol-
error or bit-error probabilities, hence we use the uncoded probability of bit error (PBE) to 
indicate the feasibility of testing under various signal and background conditions. Note 
that in communications applications, the M/4 intersymbol guard-slots are not used to 
make a symbol decision since it can be assumed that slot, symbol, and frame 
synchronization has been established before symbol detection begins, hence the location 
of the information-bearing slots and guard slots are known and can be ignored.  
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The PBE is related to the probability of PPM symbol error (PSE), as 𝑃𝐵𝐸 = -
*
𝑃𝑆𝐸 ∕

(𝑀 − 1), which states that if a PPM symbol is in error, then for large M roughly half of the 
bits are in error. The maximum likelihood algorithm for detecting PPM symbols in the 
Poisson channel calls for counting the received photons in each of the M information-
bearing slots, and select the largest count as the best estimate of the signal-slot location. 
In the absence of background, the probability of correctly guessing the signal slot is just 
the probability that at least one photon is detected. With Poisson statistics and an average 
of KS signal photons per slot, the probability of detecting at least one photon in the signal 

slot is given by 𝑃(𝐶) = 𝑝(𝑘 > 0) = 1 − exp(−𝐾:), where k is the number of photons and 

exp(−𝐾:) = 𝑝(𝑘 = 0). If zero photons are observed in all of the slots, then a random 

 

 

 
Figure 7. Examples of SCPPM photon counts with M=16, 256 high-rate simulation samples per pulse: 

a) no background, high energy pulses; b) no background, low energy pulses; and c) moderate background 

showing random background photons between signal pulses. 

high energy pulses, DSOC sampling, delay = 132 samples 16 0.05 0s bM l l= = =

a)

low energy pulses, DSOC sampling, delay = 132 samples 16 0.005 0s bM l l= = =

b)

low energy pulses, DSOC sampling, delay = 132 samples 16 0.05 0.005s bM l l= = =

c)
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choice can be made which yields correct detection 1 out of M times on the average. In this 

case, the probability of correct detection is given by 
%
-
exp(−𝐾:). The general expression 

for correct symbol detection in the presence of background photons with average number 
of Kb photons per slot is shown in Equation (2), 

  (2) 

where the last expression represents the case of zero observed photons over all M slots, in 
the presence of background. The expression in Equation (2) includes the case of all possible 
r-fold equalities. However, it was found that for large M, and especially in the presence of 
background photons, equalities do not contribute significantly to correct detection, hence 
equalities can generally be ignored. With this approximation the probability of correct 
detection is the probability that for any count k, the signal slot containing (𝐾: + 𝐾?) 
photons exceeds the remaining (𝑀 − 1) slots containing only background photons 𝐾?: 

 . (3) 

For large M, the approximate probability of bit error is given by 𝑃𝐵𝐸 ≅ %
*
[1 − 𝑃(𝐶)]. 

Figure 8 shows several examples of the achievable bit error probabilities, PBE, as a function 
of average signal photons per slot, for average background energies of (𝐾? = 0, 0.1, 1, 4) 
photons per slot, assuming Poisson statistics in the received photons. These background 
energies represent nighttime viewing of the Apollo 15 region without solar illumination 
(𝐾? = 0), light and moderate background due to morning/evening or daytime viewing of 
the Apollo 15 region (𝐾? = 0.1,1), and worst-case background conditions due to a fully 
illuminated Moon (𝐾? = 4).  

The red circles in Figure 8 represent average signal slot-counts received from the Apollo 15 

retro-reflector for Fried parameters of 𝑟$ = 3, 5, 7 cm representing strong, medium, and 

weak turbulence, for PPM symbols of length 𝑀 + -
7

 slots that include the guard-slots, and 

for repetition order 𝑞 = 4, which means that each PPM symbol is repeated 𝑞 times to 
increase the average signal energy per longer equivalent combined slots. Note that the 

background energy also increases by a factor of 𝑞, but in the optical domain with Poisson 
statistics, increasing the signal energy at a fixed ratio of signal-to-background photons 
yields improved performance. This is not the case for radio frequency systems with 
additive Gaussian noise, where performance depends only on the signal-to-noise ratio. 

With modern FEC coding and decoding algorithms, the required performance of PBE ≤
103& can usually be achieved when the uncoded bit-error probabilities are less than 0.1. 
We can therefore consider the nominal region below the dashed line in Figure 8 as the 
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“region of validity” for communications and related experiments, when 𝑀 = 128 PPM 
symbols and 𝑞 = 4 repetition factors are used. It can be seen that with negligible 
background noise, even strong turbulence that requires expanding the uplink beam to 
reduce fading at the Apollo 15 retro-reflector, useful experiments can still be carried out 
according to the above criterion. It was found that smaller M and fewer repetitions lead to 
significantly degraded performance, hence the largest available values of M should be used 
on the uplink. 

With low to moderate background, 𝐾? = 0.1	to	1, nominal performance can be achieved  

with moderate to weak turbulence, but not with strong turbulence when 𝑀 = 128 and  
𝑞 = 4. However, with the worst-case background corresponding to the full Moon, 𝐾? = 4, 
it is not possible to achieve nominal PBE performance even under weak turbulence 
conditions. 

V. Delay and Range Estimation via Correlation 

An example of a sequence of PPM symbols with M = 16 and with 8 ns slots (using 16 
transmitter samples of 500 ps each), and in addition using 16 “simulation samples” per 
“transmitter sample” to enable near-continuous representation of the range-induced 
delay, is shown in Figure 9. The asterisks represent 500 ps transmitter samples used in the 
DSOC receiver, by averaging the transmitter samples to obtain 16 samples per chip.  

Figure 9 shows the average photon intensity per received pulse, for the transmitted pulses 
(blue) and the simulated received pulses (red) modulo the PN code, with a fractional-chip 

 

Figure 8. Probability of bit error as a function of the average number of signal photons per slot, for a range of 

background energies relevant to the lunar retro-reflector application: q = 4. 
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residual delay of 132 simulation samples. However, with the 64-element nano-wire 
photon-counting detector arrays used in the DSOC receiver, each received pulse registers 
photon counts at random arrival times within each pulse. Examples of the photon counts 
and photon-arrival times for high-intensity and low-intensity signal cases without 
background are shown in Figure 7, where numerous single-photon and a few cases of 
two-photon counts can be seen for the high-intensity case of Figure 7a, but much fewer 
single-counts and even no photon-counts for a received pulse are evident in Figure 7b, 
over the short time interval corresponding to the five pulses shown.  

The simulated photon-counts obtained with ideal photon-counting detectors with 
arbitrarily high bandwidth can be used to estimate the delay of the received PN-code pulses 
with respect to the reference pulses, as shown in Figure 10. If the reference pulses are 
approximated by the ideal count-intensities, as shown by the rectangular blue pulses in 
Figure 9, and the received signal is represented by the wide-band photon-detection pulses 
shown in red, then the delay in the received signal can be obtained by correlating the ideal 
reference pulse with the received signal, as in the RF case where this cross-correlation 
operation is known to be optimal in the presence of additive Gaussian noise. This results in 
the nearly ideal cross-correlation function shown in Figure 10a, where the difference 
between the peak of the reference-signal auto-correlation function (blue) and the peak of 
the cross-correlation function (red) can be used to determine delay by counting the 
number of simulation samples, since the simulation sample duration is known. With high-
intensity pulses, the Gaussian approximation to Poisson counts is accurate as long as the 
variance of the Poisson counts is taken into account, in addition to the variance of the 
additive Gaussian noise.  

However, with the lower count-intensities shown in Figure 10b, the cross-correlation 
function is distorted due to the granularity of the random photon counts and photon 
arrival times, potentially leading to larger delay estimation errors, even with high-rate 
sampling of 256 samples per pulse. For example, with an input delay of 132 samples in the 
simulation, the delay estimate with high-rate sampling and cross-correlation yields an 
accurate estimate of 132 samples when high-intensity pulses are used. However, low-
intensity pulses, even without background interference and with the use of high-rate 
sampling, yields a slightly inaccurate estimate of 133 samples. 

 

Figure 9. Example of reference (blue) and delayed received PPM symbols (red), with 132 sample delay. 
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Figure 10. Reference and cross-correlation functions for high-rate sampling, no background interference:  

a) high energy pulses; b) low energy pulses. 

The examples in Figure 10 refer to high-rate sampling simulating the performance of an 
ultra-wideband photon-counting detector. The simulation uses 256 high-rate samples to 
obtain the idealized correlation functions of Figure 10, but more realistic samples are also 
generated by summing the counts over 16 high-rate samples. An example of the summed 
samples is shown in Figure 11, where the high-rate samples were binned to obtain the large 
photon-counts in the received signal. The count intensity of the received delayed pulses is 
shown by the dashed green pulses, which are seen to contain the binned photon-counts as 
expected. 

Since the ultra high-rate samples are not readily available, the receiver has to use the lower 
rate samples to determine delay, in a realistic configuration. Although the binning 
operation results in less resolution for determining the pulse arrival time, the random 
photon counts also tend to be smoothed by the binning operation, hence it is not clear 
what the impact of binning is on the accuracy of the delay estimates. In order to determine 
the effect of binning, we compute delay estimates via correlation for both high-rate and 
low-rate samples, and compare the mean value and standard deviation of the estimates to 
the ideal case represented by the high-rate samples. 

a) b)

 

Figure 11. Simulated 500 ps samples for high-energy delayed pulses, by summing 16 high-rate samples. Dashed 

green pulses represent the count intensity of the received pulses, with a residual delay of 132 samples. 

16 0.05 0s bM l l= = =high energy pulses, DSOC sampling, delay = 132 samples
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For this comparison of ultra high-rate sample cross-correlation with lower-rate cross 
correlation, we first consider PPM of order 𝑀 = 128, with 256 samples per pulse (ultra-
high rate sampling) and 16 samples per pulse assuming 8 ns pulse-widths [5]. A total 
1.6 × 10& high-rate samples were used in the correlation estimates. The examples of cross-
correlation functions for 10 independent runs presented in Figure 12 refer to average high-
rate sample counts of 0.01 photons per sample.  

Based on 10 independent runs of the cross-correlation estimator shown in Figure 12a, the 
mean delay estimate obtained from the ultra-high sampling rate estimator is 132.1 samples 
when the average sample photon-rate is 0.01 photons per pulse, while the rms delay error 
is 2.47 samples. Similarly, the coarse delay estimate for the lower rate samples is 128 
instead of the input delay of 132 high-rate samples, for an error of 4 samples. These coarse 
estimates are the peaks of the correlation functions shown as the cyan plots in Figure 12b.  

The correlation functions near the peak tend to be asymmetrical due to under-sampling, 
resulting in peaks that are closer to the reference peak than in the high-rate sampling case. 
This can be remedied by applying quadratic interpolation around the peak of the 
correlation function, using the peak correlation, and the two nearest samples on either 
side. The resulting quadratic interpolation functions are shown as the dashed red curves 
around the correlation peaks in Figures 12 and 13b, while the red asterisk denotes the 
interpolated delay estimate, in terms of high-rate samples. Using the quadratic 
interpolation function, the coarse estimates can be improved significantly, rivaling the 
accuracy of the high sample-rate estimator. For the example shown in Figure 13b, the 
mean value of the refined estimates is 130.82 samples, with an rms error of 2.18 high-rate 
samples. These examples suggest that performance comparable to that of the high-rate 
correlation estimator can be achieved with much lower rate and more realistic sampling, 
by applying the quadratic interpolation algorithm. 

The results shown in Figure 12 are for the ideal case of no background photon or dark-
count interference, both of which are typically present in real systems and may cause 
significant errors in the delay estimates. This case was also explored by increasing the 
background interference from zero to 0.001 photons per sample, yielding the plots shown 
in Figure 13. 

a)  b)  

Figure 12. Cross-correlation functions for high-energy pulses, with no background photons: a) ultra-high rate 

sampling; b) DSOC receiver sampling with quadratic interpolation. Roughly 500 SCPPM symbols were used. 
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a)  b)  

Figure 13. Cross-correlation functions for high-energy pulses, with moderate background photons: a) ultra-high 

rate sampling; b) DSOC receiver sampling with quadratic interpolation. Roughly 500 SCPPM symbols were used. 

The above results indicate that correlation of the received photo-counts with a copy of 
the known SCPPM intensity distribution enables accurate estimates of round-trip delay 
with realistic samples of 500 ps as available from the DSOC receiver, with and without 
background radiation [5]. The standard deviation of 1 high-rate 500/16 = 31.25 ps sample 
corresponds to a range resolution of Δ𝑅 = 𝑐𝜏/2 = 	4.7	mm, where c is the speed of light, 
and the division by two accounts for the bounce from the lunar retro-reflector. Therefore, 
rms errors of 2–3 samples correspond to a range resolution of approximately 1–1.5 cm at 
the range of the Moon, with only 500 SCPPM symbols. Longer signal vectors yield 
correspondingly better estimates, therefore millimeter level accuracies should be 
achievable with a realistic deep-space optical receiver installed in the Hybrid RF/Optical 
telescope. 

VI. Secret Key Distribution (SKD) Capacity with PPM Signals 

We consider four different secret key capacities for the PPM transmitter. Here, we will 
model both our signal and our background photons as coherent states, so that they exhibit 
Poissonian statistics at a photon-counting receiver. By convention, we will refer to the 
transmitter as “Alice,” the receiver as “Bob,” and an eavesdropper as “Eve.” We will assume 
that Alice is transmitting to Bob at a low average photon number, and that Bob receives 
some fraction 𝜂 of the signal photons while the eavesdropper Eve receives the remaining 
1 − 𝜂. This way, Eve can be modeled as a beamsplitter. First, we will consider the secret key 
rate of a classical PPM protocol, where Alice inserts all of her signal photons in a single 
time slot, and Bob and Eve use standard photon counting measurements in each slot. We 
will then consider the capacity of a BB84-type PPM modulation, in which Alice randomly 
selects either the {H, V} or the {+, –} basis, and selects one of the two corresponding modes 
at random in which to insert all of her signal photons sent to Bob. Here, “H” and “V” 
respectively correspond to horizontal and vertical polarization, while “+” and “–” 
correspond to their rotations by 45 degrees. We will assume that these signal photons 
remain in their corresponding basis state en route to Bob. Finally, we will consider the 
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secret key capacity for each of these transmitters when both Bob and Eve are allowed to 
make an arbitrary quantum measurement.  

We note that a more realistic approximation of weak background noise would be a thermal 
quantum state, with Bose-Einstein photon number statistics or Laguerre statistics in the 
presence of a signal pulse. However, when considering PPM signals, the dimension of the 
overall quantum state density operator grows exponentially in the number of time slots M. 
A pure coherent-state approximation of background noise allows us to more easily model 
the received quantum state as well as estimate the overall secret key capacity.  

A. Standard PPM Transmitter with Photon Counting 

In M-PPM modulation, Alice prepares a coherent state in one of M equiprobable time slots. 
Let NS be the average number of signal photons in this slot, and Nb the average number of 
background photons. If we take X to be a random variable representing the index of the 
time slot, and let Yx and Zx be Bob’s and Eve’s respective photon counts in the time slot 
indexed by 

𝑥 ∈ {1,… ,𝑀}, then Yx is distributed as 𝑌<~y
𝑃𝑜𝑖𝑠𝑠	(𝜂𝑁: +𝑁?), 	𝑋 = 𝑥

𝑃𝑜𝑖𝑠𝑠	(𝑁?), 	𝑋 ≠ 𝑥  and Zx is distributed 

similarly, with 𝜂 replaced by 1 − 𝜂. Denote the resulting random vectors by Y = [Y1, …, YM] 
and Z = [Z1, …, ZM].  

The secret key capacity (in secret bits per PPM frame) is given as in Reference [6] by 
CPPM = I(X;Y) – I(X;Z). We can evaluate  

 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) = 𝐻(𝑌) − ∑ 𝑃(𝑋 = 𝑥)𝐻(𝑌|𝑋 = 𝑥)@ , (4) 

where  

 𝑃(𝑋 = 𝑥) = 	1/𝑀   

 𝐻(𝑌|𝑋 = 𝑥) = (𝑀 − 1)𝐻U𝑃𝑜𝑖𝑠𝑠(𝑁?)V + 𝐻U𝑃𝑜𝑖𝑠𝑠(𝜂𝑁A +𝑁?)V (5) 

 𝐻(𝑌) = 𝐻��
B!
∑#$

-=%!⋯=&!"<0(-B!FGB')
∑�GB'FB!

B!
�
=$
��.  

When M, Nb, and NS are small, we can compute these entropies explicitly. Otherwise, we 
approximate the Poisson distributions as Gaussians, and use the approximation [7]  

 𝐼(𝑋; 𝑌) ≈ log*𝑀 

 −𝐸I%|𝒙𝟏 log* �1 + (𝑀 − 1)�(𝜌$ +	𝜌F)/𝜌F exp Z
L)L*3*L*ML)I%3	L)I%+

*(L)F	L*)
[� (6) 

where 𝜌$ = (𝜂𝑁A)*/𝑁?, 𝜌F = 𝜂𝑁A, and 𝑣%|	𝒙𝟏	~	𝑁 ��𝜌$,
L)F	L*
L*

�.  
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These computations are all mimicked for I(X;Z) by replacing 𝜂 with 1 − 𝜂. Figure 14 shows 
the secret key capacities for Standard PPM, as a function of the fractional received average 
signal photons (𝜂) per PPM pulse.  

 

Figure 14. Secret key capacities for Standard PPM (in secret bits per PPM frame) versus fractional received 

signal photons. Results are plotted for average number of signal photons per pulse NS = 1, and average number 

of background photons per pulse Nb = 0.1, for varying PPM orders (M). 

B. BB84 Combined with PPM and Photon Counting 

When the PPM signal is additionally modulated by Alice randomly choosing one of the 
polarizations {H,V, +, –} in which to prepare her signal photons, both Bob and Eve can 
randomly select one of the two bases {H,V} and {+, –} in which to measure their photons. 
We assume that Alice and Bob perform sifting, only keeping PPM frames in which Bob 
measured in the same basis in which Alice prepared her signal photons, which will occur 
50% of the time. Eve is privy to the discussion between Alice and Bob, and will have used 
the same basis for half of the PPM frames that they agreed on: that is, 25% of the time. 

Thus, the secret key capacity for Alice and Bob becomes CPP573QQR = %
*
𝐼(𝑋; 𝑌) − %

7
𝐼(𝑋; 𝑍), 

where now M is replaced by 2M and Nb is replaced by Nb/2 in our calculations of I(X;Y) and 
I(X;Z), since we are effectively doubling the number of modes that we are measuring (two 
polarization directions per time slot), and we should expect only half the total background 
photons in each orthogonal polarization direction of a given basis. Figure 15 shows the 
behavior of the secret key capacities for BB84-PPM, as a function of the fractional received 
average signal photons received by Bob per PPM symbol.  



 21 

 

Figure 15. Secret key capacities for BB84-PPM versus fractional received signal photons. Average number 

of signal photons per pulse is NS = 1, and average number of background photons per time slot is Nb = 0.1. 

PPM order is denoted by M. 

C. Standard PPM and BB84-PPM with Optimal Quantum Measurements 

In full generality, Bob and Eve should be allowed to perform any theoretically possible 
quantum measurement. To find the ultimate secret key capacity in the standard PPM case, 
we must therefore express the transmitted signal as a quantum state. In our case, if Alice 
places her signal in the xth time slot, the state received by Bob is a tensor product of 

coherent states, namely |𝜓S⟩< =	 |𝛼?⟩%⊗…⊗ |𝛼A⟩< ⊗…⊗ |𝛼?⟩-, where |𝛼?⟩ is the 

“background noise” coherent state (𝛼? = �𝑁?) and |𝛼A⟩ is the “signal” coherent state, 

with 𝛼A = �𝜂𝑁A +𝑁?  for Bob and 𝛼A = �(1 − 𝜂)𝑁A +𝑁?  for Eve. The quantum secret key 

capacity is given by Reference [8] 𝐶T3UU- = 𝐼(𝑋; 𝑌)L − 𝐼(𝑋; 𝑍)L, where 𝜌@SV  is the 

quantum state shared by Alice, Bob, and Eve. By modeling the signal and noise as coherent 
states, we guarantee that the state received by Bob is pure when conditioned on the 
classical variable X (even after tracing out Eve’s subsystem). As a result, we can compute 

 𝐼(𝑋; 𝑌)L = 𝐻(𝑌)L − ∑ 𝑃(𝑋 = 𝑥)< 𝐻(|𝜓S⟩⟨𝜓S|<) 	= 𝐻(𝑌)L (7) 

Here, 𝐻(𝑌)L =	−𝑇𝑟(𝜌S log* 𝜌S) is the von Neumann entropy, where 𝜌S  results 

from tracing out the X and Z subsystems from 𝜌@SV. Explicitly, we have 𝜌S =
	∑ 𝑃(𝑋 = 𝑥)< |𝜓S⟩⟨𝜓S|<. For computational purposes, we only compute 𝐶T3UU-  when M is 

sufficiently small, and we approximate each |𝜓S⟩<  by its projection onto the space 

spanned by tensor products of Fock states |𝑛%⟩%⊗…⊗ |𝑛-⟩-, where each 𝑛-  is also 
small. This is a reasonable approximation of the state when NS and Nb are small. As before, 

our methods for computing 𝐼(𝑋; 𝑍)L are the same as those for computing 𝐼(𝑋; 𝑌)L.  

The capacity of BB84-PPM with general quantum measurements is computed similarly, 

except that now our coherent background noise state is |𝛼?⟩⊗* with 𝛼? = �𝑁?/2, since 
each time slot will include measurements in two polarization modes, each of which will 
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have half the background photons. Also different is the fact that Alice now has four 
different types of coherent signal states, each corresponding to one of {H,V, +, –}. 
Explicitly, these will be:  

 |𝛼X⟩ = |𝛼%%⟩ ⊗ |𝛼%*⟩, 
 |𝛼Y⟩ = |𝛼%*⟩ ⊗ |𝛼%%⟩, 
 |𝛼F⟩ = |𝛼*%⟩ ⊗ |𝛼**⟩, (8) 
 |𝛼3⟩ = |𝛼**⟩ ⊗ |𝛼*%⟩, 

where 𝛼%% = �𝜂𝑁A +𝑁?/2,   𝛼%* = �𝑁?/2, 𝛼*% = 𝑗�𝜂𝑁A/2 +	�𝑁?/2,    

𝛼*% = −𝑗�𝜂𝑁A/2 +	�𝑁?/2. Now the states |𝜓S⟩<  are replaced by |𝜓S⟩<,:, where  

𝑥 ∈ {1,… ,𝑀} corresponds to the time slot index and 𝑠 ∈ {𝐻, 𝑉,+,−} corresponds to the 

signal type. Each of these states is equiprobable, with 𝑃U(𝑋, 𝑆) = 	 (𝑥, 𝑠)V = 1/4𝑀. 

Likewise, the states |𝜓V⟩<,: received by Eve are constructed the same way, but with 𝜂 

replaced by 1 − 𝜂. Figure 16 shows the behavior of the secret key capacities for Standard 
PPM and BB84-PPM as a function of the fractional received average signal photons 
received by Bob per PPM symbol, for both photon counting and generalized quantum 
measurements.  

a)  b)  

Figure 16. Secret key capacities for a) Standard PPM and b) BB84-PPM models, versus the fractional 

received signal photons per PPM symbol for both photon counting and general quantum measurements.  

Plotted at low PPM orders (M) for average signal photons per pulse Ns = 1, and average number of 

background photons per time slot Nb = 0.1. 

D. Explicit Code for Secret Key Distribution for Standard PPM  

We show how to construct a code capable of performing secret key distribution at 
the optimal rate for standard M-PPM. Setting M = 2m , begin with a linear encoder  

E: {0,1}k à{0,1}mn = {0, 1, …, M – 1}n , where we have identified the elements {0, …, M – 1} 

with those of {0,1}m. Here we select k and n so that 𝑘/𝑚𝑛 is approximately equal to 

𝐼(𝑋; 𝑌). This means that for k and n large enough, there is a corresponding decoder D 
which maps Bob’s received output of the n channel uses back to its corresponding 

vector in {0,1}k with low probability of error. For the sake of argument, assume that  

ℓ ∶= 𝑘 ⋅ )(@;V)
)(@;S)

= 𝑚𝑛 ⋅ 𝐼(𝑋; 𝑍) is an integer. We construct our code as follows: identify {0,1} 
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with GF(2), so that GF(2)[ = 	GF(2)ℓ ×…	× GF(2)ℓ with GF(2)ℓ repeated 
)(@;S)
)(@;V)

 times. Let 

L be the subspace of GF(2)[ consisting of vectors of the form [𝒗	𝒗…𝒗], with 𝒗 ∈ GF(2)ℓ. 

Clearly this subspace is itself isomorphic to GF(2)ℓ as a vector space. As such, it partitions 

GF(2)]  into 2]3ℓ =	2;^()(@;S)3)(@;V)) distinct cosets, which we label as the bit strings  

𝑐 ∈ {0,1};^()(@;S)3)(@;V)) and identify with a coset representative 𝐯𝐜 = [𝒗𝟏𝒄 	𝒗𝟐𝒄 …𝒗𝒌
𝓵

𝒄].  

Furthermore, we argue that since we are using PPM modulation, we may take our encoder 
E such that when restricted to the set of vectors in L, the resulting code achieves capacity 
for the channel to Eve. Consider, for instance, taking the encoder to be in the form 

[𝐸%𝐸*…𝐸.
ℓ
], where each 𝐸b:	{0,1}ℓ → {0,1};^ℓ/]  is an identical linear encoder which 

achieves capacity for Bob (with perhaps some modifications to our code length). Then E 

is a repetition code when restricted to the vectors [𝒗	𝒗…𝒗], which can be made to achieve 
the capacity for the channel from Alice to Eve.  

Alice now selects one of these cosets 𝑐 uniformly at random, which represents 

𝑚𝑛U𝐼(𝑋; 𝑌) − 𝐼(𝑋; 𝑍)V secret bits. She also selects a uniformly random vector  

𝐯 = [𝒗	𝒗…𝒗] ∈ 𝑳, which represents another ℓ = 𝑚𝑛 ⋅ 𝐼(𝑋; 𝑍) bits. She takes the sum  

𝐯𝐜 + 𝐯, which corresponds to a sequence in {0,1}k, which she encodes with E into n PPM 
channel uses and sends to Bob (and Eve). We see that in order for Eve to learn all of the 

secret bits, she must implicitly learn 𝐯, which in and of itself requires a rate of classical 

communication between Alice and Eve of 𝐼(𝑋; 𝑍). But this is Eve’s capacity, and were she 

to learn this, she could not learn the additional bits associated to the coset 𝑐.  

We must argue that Eve cannot learn any information about the coset c. By our encoder 
design, Eve’s outputs Z are approximately uniformly distributed over a typical set of size 
~2;^⋅)(@;V), and for any coset 𝑐, Eve’s outputs Zc must be probabilistically mapped to a 
subset of this typical set. We argue that the distribution of the Zc is the same as that for all 
the Z. For each c, then we effectively form a new codebook	{𝐯𝐜 + 𝐯}𝐯∈f. Again, by the 
construction of our encoder and the fact that it achieves capacity for Eve on L, we see that 
it also achieves capacity when restricted to any one of these codebooks, provided that Eve 
knows 𝐯𝐜. Since the 𝐯 are uniformly distributed over a set of size 2;^⋅)(@;V), the output 
distribution of the Zc will also be approximately uniform over a typical set of this size. This 
implies that the distribution of the Zc is approximately identical to that of all the outputs 
Z, meaning that 𝐻(𝑍|𝑐) ≈ 𝐻(𝑍), which immediately implies that 𝐼(𝑐; 𝑍) ≈ 0. In other 
words, Eve has no information about the 𝑚𝑛U𝐼(𝑋; 𝑌) − 𝐼(𝑋; 𝑍)V bits encoding the coset c.  

Since this is a linear code, Bob can easily decode it by multiplying the orthogonal 
complement of the generator matrix of L, which is the parity matrix H. This cancels out 
the v component of Alice’s message vc+v, leaving Hvc. If we can choose the coset 
representatives to have unique images under H, Bob can decode quickly. This method 
allows Alice and Bob to use standard capacity-achieving linear codes and encoders as 
components to build a code that achieves the secret key capacity using standard PPM 
modulation.  
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VII. Summary and Conclusions 

In this article, we examined the potential application of the five retro-reflectors left on the 
Moon by the Apollo missions, together with the Hybrid RF/Optical Receiver and a 
corresponding laser ground transmitter to emulate the photon-starved optical deep-space 
channel. Extremely short Earth-to-Moon round-trip light-times together with planetary 
rotation, orbital dynamics, atmospheric turbulence and space-loss due to the “inverse 
distance-to-the-fourth” power law will enable rapid development and testing of new 
techniques and algorithms for future communications, ranging and science applications 
in a realistic environment. Here, we developed accurate analytic models of atmospheric 
turbulence, background radiation, and optical SCPPM modulation to help evaluate system 
performance for communications, ranging, and secret key distribution protocols of 
potential interest for future human exploration and robotic missions in the solar system. 
It was shown that optical SCPPM modulation transmitted from the ground to the retro-
reflectors could be used to emulate communications, ranging, and SKD experiments in the 
presence of turbulence and background radiation, achieving performance levels consistent 
with nominal requirements expected for future deep-space exploration.  
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